The Verge Stated It's Technologically Impressive
Amado Binnie 於 1 月之前 修改了此頁面


Announced in 2016, Gym is an open-source Python library developed to assist in the advancement of support knowing algorithms. It aimed to standardize how environments are defined in AI research, making released research study more quickly reproducible [24] [144] while offering users with a basic user interface for interacting with these environments. In 2022, new developments of Gym have actually been relocated to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement learning (RL) research on computer game [147] utilizing RL algorithms and study generalization. Prior RL research focused mainly on optimizing agents to fix single jobs. Gym Retro offers the ability to generalize in between games with comparable principles however different appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic agents at first do not have knowledge of how to even walk, but are given the goals of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing procedure, the representatives discover how to adapt to changing conditions. When an agent is then removed from this virtual environment and placed in a new virtual environment with high winds, the agent braces to remain upright, recommending it had learned how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between representatives might produce an intelligence "arms race" that could increase an agent's capability to function even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a team of five OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that find out to play against human gamers at a high ability level completely through experimental algorithms. Before ending up being a group of 5, the very first public presentation happened at The International 2017, the yearly best champion competition for the video game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live one-on-one match. [150] [151] After the match, CTO Greg Brockman explained that the bot had learned by playing against itself for two weeks of genuine time, which the knowing software was a step in the instructions of creating software application that can deal with complicated jobs like a surgeon. [152] [153] The system utilizes a form of support learning, as the bots learn over time by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an enemy and taking map goals. [154] [155] [156]
By June 2018, the capability of the bots expanded to play together as a complete team of 5, and they had the ability to defeat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against expert players, however wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champions of the video game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public appearance came later on that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot player shows the difficulties of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has actually shown making use of deep reinforcement learning (DRL) representatives to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses machine finding out to train a Shadow Hand, a human-like robot hand, to control physical objects. [167] It finds out completely in simulation utilizing the very same RL algorithms and training code as OpenAI Five. OpenAI took on the object orientation problem by using domain randomization, a simulation technique which exposes the student to a range of experiences rather than attempting to fit to reality. The set-up for Dactyl, aside from having motion tracking cameras, likewise has RGB cameras to allow the robotic to control an approximate item by seeing it. In 2018, OpenAI showed that the system had the ability to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could resolve a Rubik's Cube. The robotic was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to model. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of generating gradually harder environments. ADR varies from manual domain randomization by not requiring a human to define randomization varieties. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI designs developed by OpenAI" to let developers contact it for "any English language AI task". [170] [171]
Text generation

The business has promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")

The original paper on generative pre-training of a transformer-based language model was written by Alec Radford and his colleagues, and released in preprint on OpenAI's site on June 11, 2018. [173] It showed how a generative model of language might obtain world understanding and process long-range reliances by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language design and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with only limited demonstrative variations initially released to the general public. The full variation of GPT-2 was not right away launched due to issue about possible abuse, including applications for writing phony news. [174] Some professionals revealed uncertainty that GPT-2 presented a considerable threat.

In response to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to find "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the innovation to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the total version of the GPT-2 language model. [177] Several sites host interactive presentations of different instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose students, shown by GPT-2 attaining state-of-the-art precision and perplexity on 7 of 8 (i.e. the model was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It prevents certain issues encoding vocabulary with word tokens by using byte pair encoding. This allows representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language design and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full version of GPT-3 contained 175 billion specifications, [184] 2 orders of magnitude larger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 designs with as couple of as 125 million parameters were also trained). [186]
OpenAI specified that GPT-3 prospered at certain "meta-learning" tasks and wiki.whenparked.com could generalize the purpose of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer learning in between English and Romanian, and between English and German. [184]
GPT-3 considerably improved benchmark results over GPT-2. OpenAI cautioned that such scaling-up of language models could be approaching or encountering the essential ability constraints of predictive language models. [187] Pre-training GPT-3 required several thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not immediately launched to the public for issues of possible abuse, although OpenAI prepared to permit gain access to through a paid cloud API after a two-month totally free personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the design can create working code in over a dozen programming languages, most efficiently in Python. [192]
Several concerns with problems, design flaws and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been implicated of emitting copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would terminate assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the updated technology passed a simulated law school bar exam with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also check out, analyze or generate approximately 25,000 words of text, and write code in all significant shows languages. [200]
Observers reported that the model of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has decreased to expose numerous technical details and statistics about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained state-of-the-art outcomes in voice, multilingual, and vision standards, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller sized variation of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly helpful for business, startups and designers looking for to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have actually been designed to take more time to consider their responses, leading to greater precision. These designs are particularly reliable in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 reasoning design. OpenAI also unveiled o3-mini, a lighter and much faster variation of OpenAI o3. Since December 21, 2024, this design is not available for public usage. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, security and security researchers had the chance to obtain early access to these models. [214] The model is called o3 instead of o2 to prevent confusion with telecommunications providers O2. [215]
Deep research study

Deep research study is an agent developed by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 design to perform comprehensive web surfing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic resemblance between text and images. It can significantly be utilized for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to interpret natural language inputs (such as "a green leather handbag shaped like a pentagon" or "an isometric view of an unfortunate capybara") and produce matching images. It can produce pictures of realistic things ("a stained-glass window with an image of a blue strawberry") as well as items that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an updated variation of the design with more practical outcomes. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a new fundamental system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective model much better able to create images from intricate descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was released to the public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can produce videos based on brief detailed triggers [223] as well as extend existing videos forwards or in reverse in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The optimum length of created videos is unknown.

Sora's advancement group named it after the Japanese word for "sky", to symbolize its "endless innovative capacity". [223] Sora's innovation is an adjustment of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos in addition to copyrighted videos licensed for that purpose, however did not reveal the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the public on February 15, 2024, specifying that it might generate videos approximately one minute long. It also shared a technical report highlighting the approaches used to train the design, and the design's abilities. [225] It acknowledged some of its drawbacks, including struggles mimicing intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "excellent", but kept in mind that they must have been cherry-picked and may not represent Sora's normal output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, noteworthy entertainment-industry figures have shown considerable interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry revealed his awe at the innovation's ability to create practical video from text descriptions, citing its prospective to reinvent storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had decided to pause strategies for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of varied audio and is also a multi-task design that can perform multilingual speech acknowledgment in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can produce songs with 10 instruments in 15 designs. According to The Verge, a tune generated by MuseNet tends to start fairly however then fall into turmoil the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were utilized as early as 2020 for the internet psychological thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs tune samples. OpenAI mentioned the songs "reveal regional musical coherence [and] follow standard chord patterns" however acknowledged that the tunes lack "familiar bigger musical structures such as choruses that duplicate" which "there is a substantial gap" in between Jukebox and human-generated music. The Verge mentioned "It's technically remarkable, even if the results sound like mushy versions of songs that might feel familiar", while Business Insider specified "remarkably, some of the resulting tunes are catchy and sound genuine". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI released the Debate Game, which teaches machines to discuss toy problems in front of a human judge. The purpose is to research study whether such an approach might help in auditing AI choices and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of eight neural network models which are frequently studied in interpretability. [240] Microscope was developed to evaluate the functions that form inside these neural networks quickly. The designs included are AlexNet, VGG-19, different versions of Inception, and different versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is a synthetic intelligence tool developed on top of GPT-3 that offers a conversational user interface that allows users to ask concerns in natural language. The system then responds with an answer within seconds.